Электроника. Радиотехника

LVDS

Дифференциальная передача данных

TMDS

Transition
Minimized 
Differential 
Signaling


Минимизированная передача дифференциального сигнала. 04-06В.

Данные передаваемые по шине формируют изображение. Изображение формируется по строчно. Т.Е., имея разрешение экрана 1920х1080 мы имеем 1920 пикселей расположенных в столбец и 1080 пикселей расположенных в строках. Представив бегущие огни, станет понятней принцип построения изображения.

Разрешение экрана — это параметр, определяющий количество точек (или пикселей), которые содержатся в изображении.Выражается в сочетании двух чисел, обозначающих количество пикселей на экране по горизонтали и по вертикали. Например, разрешение экрана 1920 × 1080 означает, что по всей длине экрана (горизонтали) в ряд расположены 1920 пикселей, а по всей ширине экрана (вертикали) — 1080 пикселей.

Каждый же пиксель состоит из суб пикселей. В каждом пикселе 3 субпикселя (крассный, синий, зеленый)

Если частота обновления равна 120 кадрам в секунду, то каждый пиксель (состоящий из субпикселей) «Зажгется» одним из трех цветов 120 раз в секунду. Обновление происходит с лква на право от первого пикселя до последнего.

Немного подругому работает двуканальный TMDS

LVDS

Low-Voltage
Differential
Signaling

Низковольтная дифференциальная передача данных ( сигналов ) (англ. low-voltage differential signaling или LVDS) 0.35В
Способ передачи электрических сигналов, позволяющийпередавать информацию на высоких частотах при помощи дешёвых соединений на основе медной витой пары. Стандарт разрабатывался и продвигался компанией Texas Instruments. Начиная с 1994 года низковольтная дифференциальная передача сигналов используется в компьютерной индустрии, где нашла широкое применение для создания высокоскоростных компьютерных сетей и компьютерных шин. Стандартизовано как ANSI/TIA/EIA-644-A в 2001 году.

Материал из Википедии — свободной энциклопедии

Через интерфейс LVDS подается также и питающее напряжение для элементов LCD-матрицы. Это напряжение, обозначаемое в табл.4 как VCC, может представлять собой напряжение одного из трех номиналов:
— +3.3 V (обычно для 15-дюймовых матриц);
— +5V (для 15-дюймовых и 17-дюймовых матриц);
— +12V (обычно для 19-дюймовых матриц и больше).

При низковольтной дифференциальной передаче для передачи одного сигнала используется дифференциальная пара (сигналов); это означает, что передающая сторона подаёт на проводники пары различные уровни напряжения, которые сравниваются на приёмной стороне: для декодирования информации используется разница напряжений на проводниках пары. Передатчик направляет небольшой ток (порядка 3,5 мА) в один из сигнальных проводников, в зависимости от того, какой логический уровень надо передать. На приёмной стороне ток проходит через резистор сопротивлением 100—120 Ом (равным волновому сопротивлению кабеля для уменьшения отраженного сигнала) и возвращается к отправителю сигнала по другому проводнику, образуя таким образом замкнутую электрическую цепь. В соответствии с законом Ома напряжение на резисторе будет составлять около 350 мВ. Принимающая сторона определяет полярность этого напряжения для того, чтобы определить логический уровень. Такой тип передачи называется токовая петля.

Небольшая амплитуда сигнала, а также высокая электромагнитная связь проводов пары друг с другом позволяют уменьшить излучаемые вовне помехи и рассеиваемую мощность.

Синфазное напряжение (среднее напряжение двух проводников) обычно составляет около 1,25 В, что позволяет использовать LVDS во многих СБИС с напряжением питания 2,5 В и ниже. Как упоминалось выше, напряжение между проводниками пары составляет 350 мВ, что позволяет по сравнению с другими способами передачи сигналов значительно снизить потребляемую мощность. Например, статическая мощность, рассеиваемая на нагрузочном резисторе LVDS, составляет всего 1,2 мВт, по сравнению с 90 мВт, рассеиваемыми на нагрузочном резисторе интерфейса RS-422. Без нагрузочного резистора для каждого бита данных приходилось бы нагружать и разгружать весь проводник. Использование нагрузочного резистора и высоких частот передачи приводит к тому, что бит покрывает лишь часть проводника (в процессе передачи со скоростью электромагнитных колебаний в среде), что является более энергоэффективным.

LVDS — не единственная используемая дифференциальная система. Но она остается единственной, сочетающей в себе высокие скорости и небольшое рассеивание энергии.

Любого жидкокристаллического (ЖК) экрана представляет собой матрицу, образованную системой строковых и столбцовых электродов. При этом каждый элемент изображения находится на пересечении строки и столбца

Каждой ячейки матрицы адресуется номером строки и номером столбца

Для включения соответствующего пиксела (точки) должен быть выбран столбец и должна быть указана строка, в которой находится этот пиксел. В результате, к ЖК-ячейке прикладывается напряжение, величина которого определяет яркость точки. Выборка строк и столбцов осуществляется переключением ключевых транзисторов, которые образуют так называемые, драйверы столбцов (Column Driver-CD или Source Driver-SD) и драйверы строк (Row Driver-RD или Gate Driver-GD). Естественно, что количество транзисторов, содержащихся в столбцовых драйверах должно точно соответствовать количеству столбцов, а количество ключевых транзисторов строковых драйверов должно равняться количеству строк на экране. Непосредственную коммутацию ЖК-ячейки осуществляет TFT (тонкопленочный транзистор). Количество TFT-транзисторов равно количеству ЖК-ячеек. Напомним, что напряжение, прикладываемое к ЖК-ячейке, формируется столбцовым драйвером, а драйверы строк формируют сигнал открывания/запирания TFT-транзистора

Рис.2 Эквивалентная схема управления ЖК-ячейками

Так, например, в цветной панели 1024х768 точек, имеется 1024 столбца и 768 строк, при этом, так как панель цветная, то и каждый элемент изображения состоит еще из трех элементов – красного, зеленого и синего. Поэтому такая панель содержит 3072 столбца (1024х3) и 768 строк. Таким образом, для управления этой панелью требуется 3072+768=3840 транзисторов. Естественно, что все эти транзисторы размещаются в интегральных микросхемах, образующих вместе с ЖК-панелью единую неразборную конструкцию.

Информация о градации цвета, т.е. о яркости цветной точки передается в формате R/G/B. Эти данные должны поступать на столбцовые драйверы в цифровом виде. И уже столбцовыми драйверами эти цифровые данные преобразуются в аналоговое напряжение, прикладываемое к ЖК-ячейкам. Строковые драйверы никаких преобразований не выполняют, и поэтому обеспечивают лишь «перебор» строк, указывая ту строку, ЖК-ячейки которой засвечиваются в данный момент времени. Таким образом, строковые драйверы должны получать только лишь управляющие сигналы позволяющие осуществлять перебор строк. В то же самое время, столбцовые драйверы управляются сигналами, позволяющими осуществлять перебор точек строки, и одновременно с этим получают еще и сигналы цвета R/G/B.

Сигналы, необходимы для управления столбцовыми и строковыми драйверами

Сигналы цвета в формате R/G/B, как известно, приходят на вход монитора от персонального компьютера. Эти сигналы обрабатываются графическим контроллером монитора, получившим название скалер (Scaler). Скалер осуществляет преобразование изображения, масштабируя его из любого входного формата в формат, соответствующий разрешению матрицы. Таким образом, данные, передаваемые на LCD-панель, формируются на основной (микропроцессорной) плате монитора, а именно, на выходе микросхемы скалера и передаются на панель с использованием соответствующего интерфейса (рис.4). Этот интерфейс представляет значительный практический интерес для специалиста, осуществляющего диагностику монитора, так как позволяет достаточно точно определить местоположение проблемы – на главной плате монитора или внутри LCD-панели.

Рис.4 Общая архитектура LCD-монитора

Существует несколько способов (несколько интерфейсов) соединения ЖК-панели с главной платой микропроцессора:

— параллельный цифровой интерфейс;

— интерфейс TMDS;

— интерфейс LVDS;

— интерфейс RSDS.

У производителей LCD-панелей эти интерфейсы пользуются различной популярностью – какие-то интерфейсы безоговорочно доминируют, а применение других является, скорее, экзотикой, чем правилом. Но, тем не менее, с каждым из этих типов интерфейсов встречался любой специалист, имеющий за плечами богатый практический опыт. Поэтому мы и рассмотрим все перечисленные интерфейсы.

Параллельный цифровой интерфейс

Это самый первый из внешних интерфейсов для LCD-панелей. На сегодняшний день он встречается крайне редко, да и то лишь в устаревших моделях мониторов. У этого типа соединения много недостатков:
-слишком большое количество соединительных проводов, в результате чего шлейф получается громоздким и негибким;
— сложность синхронизации при передаче данных на высоких частотах, т.е. в режимах с высоким разрешением;
— более высокая стоимость;
— сложность масштабирования и наращивания интерфейса при изменении модели LCD-панели (печатный монтаж главной платы разводится под определенный тип панели);
— слабая помехозащищенность и др.
Все это и привело к постепенному вытеснению параллельного интерфейса другими интерфейсами с последовательной передачей данных.
В случае параллельного интерфейса, все сигналы, необходимые для управления столбцовыми и строковыми драйверами формируются на главной плате. Внутри LCD-панели имеются лишь столбцовые и строковые драйверы, которые, фактически, управляются напрямую микросхемой скалера.

При использовании параллельного интерфейса, столбцовые и строковые драйверы напрямую управляются микросхемой скалера

Параллельный интерфейс в документации чаще всего обозначают как цифровой интерфейс (Digital), или как TTL интерфейс. И это справедливо, т.к. все сигналы на нем соответствуют TTL-уровням. Наибольшее количество контактов интерфейса соответствует шинам данных цвета. Эти шины, традиционно, бывают двух типов:

— 6-разрядные;

— 8-разрядные.

В первом случае для передачи цвета задействовано 18 цифровых линий (6 бит х 3 цвета), а во втором – 24 цифровых линии (8 бит х 3 цвета). В некоторых случаях можно встретиться с двухканальным исполнением цифрового интерфейса. В данном варианте, цветовые данные могут передаваться либо по 36 линиям (в случае 6-битного кодирования цвета), либо по 48 линиям (в случае 8-битного кодирования цвета)

Увеличение пропускной способности интерфейса обеспечивается введением второго канала передачи данных
Всего же, на параллельном цифровом интерфейсе можно найти следующие информационные и управляющие сигналы:
— шина данных красного цвета: 6-разрядная (R0-R5) или 8-разрядная (R0-R7);
— шина данных зеленого цвета: 6-разрядная (G0-G5) или 8-разрядная (G0-G7);
— шина данных синего цвета: 6-разрядная (B0-B5) или 8-разрядная (B0-B7);
— сигнал разрешения данных LCD-панели (DE – Data Enable);
— сигнал тактовой частоты (частота пикселов PCLK – Pixel Clock);
— сигнал строчной синхронизации (HSYNC);
— сигнал кадровой синхронизации (VSYNC).
Естественно, могут присутствовать и другие специальные управляющие сигналы, характерные для отдельных LCD-панелей. В результате, количество соединительных линий цифрового интерфейса обычно колеблется от 25 до 60, в зависимости от разрядности цвета, количества каналов и количества управляющих сигналов, т.е. в конструктивном плане разъемы интерфейса могут быть самыми разнообразными.

Такое полное отсутствие каких-либо спецификаций на цифровой интерфейс является еще одним отрицательным фактором, определившим отказ разработчиков от его применения. Каждый разработчик LCD-панели использовал цифровой интерфейс с таким количеством контактов и с таким их расположением, которое казалось ему удобным и оптимальным. И зачастую, при появлении новой LCD-панели, тот же самый разработчик мог использовать интерфейс совершенно другой конфигурации. В результате, желание использовать новую модель LCD-панели, приводило к необходимости полностью переделывать главную плату монитора и разводить печатный монтаж заново. Именно поэтому не имеет смысла даже пытаться систематизировать параллельные интерфейсы – все они имеют разное количество контактов, контакты могут располагаться как в один ряд, так и в два ряда, соединительный шлейф может быть как ленточным, так и состоящим из отдельных проводов и т.д. и т.п. Также стоить обратить внимание, что количество и тип управляющих сигналов, таких как сигналы строчной и кадровой синхронизации, тактовой частоты, разрешения и т.п. также не подвергаются спецификации и поэтому наличие всех этих сигналов и их количество является уникальным для каждой модели LCD-панели. Для получения информации о цоколевке внешнего разъема соответствующей LCD-панели, необходимо обратиться к ее документации, благо, что Data Sheet почти на любую модель LCD-панели любого производителя можно найти в Internet’е.

Цифровой интерфейс является очень простым для диагностики. Достаточно загрузить на экран изображение «белое поле», чтобы добиться активности абсолютно всех сигналов интерфейса, в чем можно убедиться с помощью осциллографа. При этом, все активные сигналы будут иметь регулярную структуру, и их амплитуда будет соответствовать уровням TTL (см. рис.7). Если же требуется активизировать сигналы какого-то одного цветового канала, то необходимо загрузить на экран соответствующее «цветовое поле».

Осциллограмы основных сигналов параллельного интерфейса при работе монитора с тестовым изображением «белое поле»
В качестве примера использования параллельного интерфейса, можно упомянуть монитор Sony SDMM50, цифровой интерфейс которого представлен на рисунке.

Параллельный интерфейс монитора Sony SDMN-50

Этот интерфейс является 41-контактным, одноканальным и с 6-разрядным кодированием цвета. Все сигналы интерфейса являются сигналами TTL и формируются микросхемой АЦП/Скалера (IC10).

Осциллограмы основных сигналов параллельного интерфейса при работе монитора с тестовым изображением «белое поле»

В качестве примера использования параллельного интерфейса, можно упомянуть монитор Sony SDMM50, цифровой интерфейс которого представлен на рис.8. Этот интерфейс является 41-контактным, одноканальным и с 6-разрядным кодированием цвета. Все сигналы интерфейса являются сигналами TTL и формируются микросхемой АЦП/Скалера (IC10).

На сегодняшний день, цифровой параллельный интерфейс чаще можно встретить в малогабаритных жидкокристаллических дисплеях, например, для сотовых телефонов и цифровых фотокамер. При этом наряду с параллельным интерфейсом, в подобных дисплеях, чаще всего, используется еще и микропроцессорный интерфейс, состоящий из шины адреса, шины данных и соответствующих управляющих сигналов, но эти интерфейсы не являются темой настоящего обзора.

Интерфейс TMDS

Наибольшее распространение интерфейс TMDS приобрел в качестве внешнего интерфейса, используемого для передачи данных от компьютера на монитор. Чтобы убедиться в этом, можно лишь вспомнить, что TMDS является основой таких внешних интерфейсов, как P&D, DFP, DVI, HDMI. Однако TMDS применялся в свое время и для передачи данных между скалером и LCD-панелью.

Достаточно часто в сервисных руководствах LCD-мониторов упоминается интерфейс Panel Link, как интерфейс, используемый для подключения LCD-панели к главной плате. Но при более детальном рассмотрении интерфейса Panel Link обнаруживается, что у него очень много общего с интерфейсом TMDS. Да это и не удивительно.

Дело в том, что спецификация с торговой маркой Panel Link была изначально разработана компанией Silicon Image. Целью разработки являлось создание интерфейса, позволяющего разработчику оборудования объединять любую микропроцессорную систему с любой LCD-панелью. Впоследствии этот интерфейс был зарегистрирован ассоциацией VESA под названием TMDS (Transition Minimized Differential Signal). В результате, на сегодняшний день принято считать, что TMDS – это внешний интерфейс для подключения монитора к источнику сигнала, в то время как Panel Link – это интерфейс для подключения LCD-панели, хотя такое деление является, в общем-то, условным. Достаточно широкому упоминанию спецификации Panel Link способствует то обстоятельство, что компания Silicon Image является ведущим и одним из крупнейших разработчиков элементной базы для LCD-мониторов, и, в частности, микросхем скалеров. Поэтому, вполне естественно, что компания Silicon Image при описании своих микросхем упоминает именно интерфейс Panel Link (ничем не отличающийся от TMDS). В данной публикации мы будем считать эти два интерфейса абсолютно идентичными и будем упоминать чаще всего TMDS, хотя все сказанное будет, в равной степени, относится и к Panel Link.

Рис.9  Дифференциальный способ передачи данных повышает помехозащищенность соединения
Интерфейс TMDS имеет следующие основные электрические характеристики и технические параметры:
— пропускная способность свыше 1 Гб/с;
— длина соединения до 15 метров, в зависимости от типа и мощности приемо-передатчиков;
— напряжение питания элементов интерфейса: 4В;
— размах дифференциальных сигналов: от 400 мВ до 600 мВ;
— сопротивление терминаторов: 50 Ом.
На интерфейсе TMDS допускается два варианта сигналов:
— несимметричный сигнал, формируемый только на одной из двух дифференциальных линий (либо на «+», либо на «-»);
— дифференциальный сигнал.

Высокому уровню несимметричного сигнала соответствует питающее напряжение AVcc, номинальное значение которого составляет 3.3В, а максимальное – 4.0В. Низкий уровень несимметричного сигнала равен AVcc-Vswing, где Vswing – это напряжение размаха сигнала и составляет от 400мВ до 600мВ.
Дифференциальный сигнал находится в диапазоне между +Vswing и –Vswing, т.е. от +600мВ до -600мВ (в максимальном варианте). Разницу между дифференциальным сигналом и несимметричным сигналом, передаваемым по дифференциальным линиям TMDS, демонстрирует рис.10. 

Рис.10 Симметричный и несимметричный дифференциальные сигналы
Существует два типа TMDS-интерфейсов:
— одноканальный TMDS;
— двухканальный TMDS.
Использование двухканального TMDS обусловлено необходимостью обеспечения большой пропускной способности интерфейса в случае использования крупногабаритных LCD-панелей и режимов с высоким разрешением. Использование двух каналов TMDS целесообразно при работе в режимах, имеющих полосу пропускания видеосигналов свыше 165 МГц.
Сначала рассмотрим одноканальный TMDS. Одноканальный (классический TMDS) состоит из четырех дифференциальных пар:
— трех дифференциальных пар, предназначенных для передачи данных;
— одной дифференциальной пары, предназначенной для передачи тактовых сигналов.
Таким образом, одноканальный TMDS состоит из восьми линий – четырех 4 пар (рис.11), по которым передаются и сигналы цвета R/G/B, и сигналы строчной и кадровой синхронизации, и другие управляющие сигналы.

Так как данные по TMDS передаются в последовательном виде, а на выходе скалера эти же данные формируются в параллельном виде, возникает необходимость преобразования параллельного кода в последовательный с одновременным преобразованием TTL-сигналов в дифференциальные сигналы. Такое преобразование должно осуществлять передающее устройство. Устройство же, принимающие данные по TMDS, наоборот, должно осуществлять преобразование дифференциальных последовательных данных в параллельные данные TTL-уровня. Таким образом, в системе передачи данных появляются два устройства:
— передатчик – трансмиттер (Transmitter);
— приемник – ресивер (Receiver).
Трансмиттер осуществляет преобразование параллельного кода в последовательный, а ресивер, наоборот – последовательного кода в параллельный. Таким образом, со стороны главной платы монитора находится Transmitter, а на LCD-панели размещается Receiver (рис.12)

Архитектура TMDS-интерфейса
Трансмиттер представляет собой микросхему, состоящую из трех 10-разрядных сдвиговых регистров, умножителя частоты и выходных дифференциальных усилителей (рис.13).

Рис.13 Внутренняя архитектура транисмиттера TMDS
Входной сигнал CLK представляет собой сигнал пиксельной частоты (Pixel Clock) и он определяет частоту формирования сигналов R/G/B на входе трансмиттера. Умножитель частоты умножает частоту CLK в 10 раз. Полученный тактовый сигнал (10CLK) используется для тактирования сдвиговых регистров, а также передается по дифференциальным линиям CX+/-.
Сдвиговые регистры трансмиттера по каждому такту сигнала 10CLK поочередно «выталкивают» свои входные биты на соответствующую выходную дифференциальную линию. Таким образом, на каждой из трех дифференциальных линий данных (RX0+/-, RX1+/-, RX2+/-) формируется 10-разрядный последовательный код, передаваемый синхронно с тактовыми сигналами на линии CX+/-. Трансмиттер TMDS не только производит преобразование параллельного кода в последовательный, но и обеспечивает преобразование 8-битного кода в 10-битовый с целью уменьшения количества фронтов и одновременно с целью обеспечения баланса сигнала по постоянной составляющей. Для кодирования используется фирменный запатентованный метод.
Обратное преобразование последовательного кода в параллельный осуществляется ресивером, входящим в состав LCD-панели, т.е. ресивер является зеркальным отражением трансмиттера.
Итак, на LCD-панель, необходимо передать 24-разрядный цветовой код (три по 8 бит), сигналы HSYNC и VSYNC, а также сигнал разрешения данных – сигнал DE. Итого, 27 сигналов. При этом у трансмиттера имеется 30 входных контактов. То, как распределяются упомянутые сигналы по входам трансмиттера, демонстрируется на том же рис.13, из которого видно, что каждому базовому цвету соответствует своя дифференциальная пара TMDS:
— по линиям первой пары (RX0+/-) передается синий цвет;
— по линиям второй пары (RX1+/-) передается зеленый цвет;
— по линиям третьей пары (RX2+/-) передается красный цвет.
Сигналы синхронизации подмешиваются к синему цвету, т.е. передаются по линиям первого канала. Такое четкое распределение сигналов цвета по каналам интерфейса TMDS дает возможность достаточно легко диагностировать интерфейс при загрузке на экран изображения «цветное поле» (красное, синее или зеленое), а также изображения «белое поле». Интересно отметить, что на принципиальных схемах LCD-мониторов, можно встретить, например, такое обозначение дифференциальных пар интерфейса TMDS, как REDTMDS +/-, GREENTMDS+/-, BLUETMDS+/-, что говорит само за себя.
Это нами был описан классический вариант интерфейса TMDS. Однако в спецификации TMDS упоминается и другой вариант кодирования данных, который очень часто используется для передачи данных именно на LCD-панель. Этот второй вариант кодирования подразумевает, что сигналы HSYNC и VSYNC должны передаваться по другим отдельным линиям в виде TTL-сигналов, т.е. эти сигналы не подмешиваются в дифференциальный поток данных синего цвета. Дифференциальные линии, в данном случае, используются, исключительно, для передачи 8-разрядных данных, т.е. для передачи цвета и при этом 8-разрядный цветовой код преобразуется в избыточный 10-разрядный последовательный код.

Разницу между двумя вариантами кодирования данных в TMDS, демонстрирует рис.14.
 Сдвиговые регистры TMDS-трансмиттера могут быть как 8-разрядными, так и 10-разрядными.


Двухканальный TMDS, как уже говорилось выше, позволяет увеличить пропускную способность интерфейса. В двухканальный TMDS вводится еще три дифференциальных пары для передачи данных. При этом линия синхронизации остается единой, и она тактирует передачу данных уже по шести линиям данных (см. рис.15).

Рис.15 Двухканальный TMDS позволяет значительно увеличить пропускную способность интерфейса

Таким образом, получается два канала передачи данных по три дифференциальные линии в каждом. Увеличение пропускной способности осуществляется за счет того, что один канал используется для передачи данных о цвете четных точек экрана (канала Even), а второй — для передачи данных цвета нечетных точек (Odd). Т.е. за один цикл (один такт CLK) предаются данные, описывающие сразу две точки экрана, т.е. передается 48 разрядов вместо 24 при одноканальном TMDS.

Канал, образованный парами RX0+/-, RX1+/-, RX2+/-, предназначен для передачи данных о цвете нечетных точек. Второй канал, образованный парами RX3+/-, RX4+/-, RX5+/-, предназначен для передачи данных о цвете четных точек экрана.

Интерфейс TMDS, использующийся для связи LCD-панели с главной платой монитора, не подвергался какой-либо спецификации, т.е. точного описания конструктивного исполнения разъемов, количества необходимых контактов на этих разъемах, а также распределения сигналов по контактам разъема, в природе не существует. Каждый производитель LCD-панели, решивший использовать интерфейс TMDS, самостоятельно выбирает конструктив разъема. Однако попытка систематизировать интерфейс TMDS нами все-таки была предпринята. Из описаний того небольшого количества LCD-панелей, в которых используется интерфейс Panel Link, удалось выяснить, что соединительный разъем, чаще всего, является 21-контактным (разъем типа FI-WE21P-HF), и контакты в нем размещены в два ряда со сдвигом (рис.16).

Рис.16   21-контактный разем TMDS-интерфейса

Распределение сигналов интерфейса по контактам такого разъема представлено в табл.1 (обратите внимание, что сигналам HSYNC и VSYNC соответствуют отдельные контакты).

Таблица 1. Сигналы 21-контактного разъема интерфейса TMDS

Обознач.Сигнал
1GND Общий
2VDD «Аналоговое» напряжение для пита-ния ЖК и других элементов матрицы 
3VDD 
4VDD 
5GND Общий
6GND Общий
7GND Общий
8VCC Напряжение питания Panel Link 
9RX2+«+» дифф. пары №2 (красный цвет)
10RX2-«-» дифф. пары №2 (красный цвет)
11VCC Напряжение питания Panel Link 
12RX1+«+» дифф. пары №1  (зеленый цвет)
13RX1-«-» дифф. пары №1 (зеленый цвет)
14VCC Напряжение питания Panel Link
15RX0+«+» дифф. пары №0 (синий цвет)
16RX0-«-» дифф. пары №0 (синий цвет)
17HSYNC Сигнал строчной синхронизации
18RXC+«+» дифф. пары тактовых  импульсов
19RXC-«-» дифф. пары тактовых  импульсов
20VSYNC Сигнал кадровой синхронизации
21NC Не используется

В табл.2 представлено описание интерфейса Panel Link монитора LG LB570 (в этой таблице мы намеренно оставили такое же обозначение сигналов, которое используется компанией LG). В этом мониторе LCD-панель также подключается через 21-контактный разъем, но сигналы HSYNC и VSYNC на интерфейсе отсутствуют, т.е. отдельно не передаются. Это означает, что управляющие сигналы, в том числе и HSYNC/VSYNC, передаются в 10-битовом потоке данных по дифференциальным линиям. Сравнение таблиц 1 и 2 показывает, что эти интерфейсы практически идентичны и разнятся они только сигналами HSYNC/VSYNC, да еще буквенным обозначением сигналов.

Таблица 2. Назначение контактов разъема интерфейса Panel Link vонитора LG LB570

Обознач.Сигнал
1GND Общий
2VDD «Аналоговое» напряжение для питания ЖК и других элементов матрицы
3VDD 
4VDD 
5GND Общий
6GND Общий
7TMDSGND Общий для TMDS
8TMDSPOWER Напряжение питания TMDS
9TMDSREDP «+» дифф. пары красного цвета
10TMDSREDN «-» дифф. пары красного цвета
11TMDSPOWER Напряжение питания TMDS 
12TMDSGRNP «+» дифф. пары зеленого цвета
13TMDSGRNN «-» дифф. пары зеленого цвета
14TMDSPOWER Напряжение питания TMDS 
15TMDSBLUP «+» дифф. пары синего цвета и  сигналов HS/VS 
16TMDSBLUN «-» дифф. пары синего цвета и  сигналов HS/VS 
17TMDSPOWER Напряжение питания TMDS 
18TMDSCLKP «+» дифф. пары синхроимпульсов
19TMDSCLKN «-» дифф. пары синхроимпульсов
20TMDSPOWER Напряжение питания TMDS 
21NC Не используется

Но еще раз отмечаем, что единого стандарта не существует и это только один из возможных вариантов разъема, хотя и наиболее распространенный. Уточнить тип используемого интерфейса и выяснить распределение сигналов по контактам соединительного разъема, как всегда, можно в Data Sheet’е на LCD-панель.

Но, тем не менее, при использовании TMDS появляется некоторая универсальность соединения LCD-панели с главной платой монитора. Для обеспечения такой унификации, главная плата монитора должна оснащаться универсальным трансмиттером, совместимым с любым ресивером LCD-панели. Кстати сказать, компания Silicon Image является лидером в разработке TMDS трансмиттеров/ресиверов, и их крупнейшим поставщиком, что, в общем-то, и неудивительно. Широкое распространение, в свое время, получили такие пары трансмиттеров/ресиверов, как SIL100/SIL101, SIL150/SIL151, SIL160/SIL161 и др. Если в мониторе используется интерфейс TMDS, то смена LCD-панели не приводит к необходимости переработки всей главной платы – достаточно будет согласовать лишь соединительный шлейф или разъем. В крайнем случае, потребуется замена TMDS-трансмиттера.

В случае использования интерфейса TMDS, в составе LCD-панели появляется специальная микросхема – контроллер синхронизации TCON (Timing CONtroller). Контроллер TCON осуществляет преобразование входных сигналов (R/G/B, HSYNC, VSYNC) в сигналы управления столбцовыми и строковыми драйверами. Внутренняя архитектура LCD-панели при использовании интерфейса TMDS представлена на рис.17. Необходимо отметить, что многие контроллеры TCON интегрированы с TMDS-ресивером. В этом случае входными сигналами TCON являются дифференциальные пары TMDS.Рис.17 Внутренняя архитектура LCD-панели с внешним интерфейсом TMDS

Цветовые данные R/G/B от контроллера TCON к столбцовым драйверам передаются по внутреннему интерфейсу, в качестве которого, чаще всего, используется интерфейс RSDS (реже MLVDS).

Анализ огромного количества LCD-панелей показал, что интерфейс TMDS (Panel Link) использовался и используется крайне редко и его применение, в большинстве случаев, характерно для 14-15 дюймовых моделей.

Интерфейс LVDS


Интерфейс LVDS на текущий момент времени является самым распространенным интерфейсом из всех используемых в мониторах настольного типа и в матрицах для ноутбуков. По сравнению с TMDS, интерфейсом LVDS обеспечивается более высокая пропускная способность, что и привело к тому, что LVDS, фактически, стал стандартом внешнего интерфейса для современной LCD-панели.
LVDS (TIA/EIA-644) – Low Voltage Differential Signaling (низковольтная дифференциальная передача сигналов) – это дифференциальный интерфейс для скоростной передачи данных. Интерфейс разработан фирмой National Semiconductor в 1994 году. Технология LVDS отражена в двух стандартах:
1. TIA/EIA (Telecommunications Industry Association/Electronic Industries Association) — ANSI/TIA/EIA-644 (LVDS)
2. IEEE (Institute for Electrical and Electronics Engineering) — IEEE 1596.3
Кроме того, этот интерфейс часто используется под торговой маркой FPD-Link TM. Вторым владельцем авторских прав на эту шину является компания Texas Instruments, которая выпускает ее под фирменной торговой маркой FlatLinkTM.
Интерфейс LVDS позже дорабатывался с целью увеличения пропускной способности и повышения надежности передачи данных, а также он выпускался другими разработчиками под разными торговыми марками, что внесло некоторую неясность в классификацию интерфейсов и складывается впечатление, что имеется множество различных шин. Так, например, разновидностями и торговыми марками интерфейса LVDS являются:
— FPD-LinkTM;
— FlatLinkTM;
— PanelBusTM;
— LDI;
— OpenLDITM.
Интерфейс LVDS во многом схож с интерфейсом TMDS, особенно в плане архитектуры и схемотехники. Здесь мы также имеем дело с дифференциальной передачей данных в последовательном виде. А это означает, что интерфейс LVDS подразумевает наличие трансмиттеров и ресиверов, осуществляющих точно такое же преобразование данных, как и в TMDS (о чем достаточно подробно рассказывалось в первой части статьи). Поэтому остановимся лишь на особенностях, отличающих интерфейс LVDS от интерфейса TMDS.
LVDS способен передавать до 24 битов информации за один пиксельный такт, что соответствует режиму True Color (16.7 млн. цветов). При этом исходный поток параллельных данных (18 бит или 24 бита) конвертируется в 4 дифференциальные пары последовательных сигналов с умножением исходной частоты в семь раз. Тактовая частота передается по отдельной дифференциальной паре. Уровни рабочих сигналов составляют 345 мВ, выходной ток передатчика имеет величину от 2.47 до 4.54 мА, а стандартная нагрузка равна 100 Ом. Данный интерфейс позволяет обеспечить надежную передачу данных с полосой пропускания свыше 455 МГц без искажений на расстояние до нескольких метров.
Трансмиттер LVDS состоит из четырех 7-разрядных сдвиговых регистров, умножителя частоты и выходных дифференциальных усилителей (рис.18).

Рис.18
Достаточно часто в литературе, в документации и на схемах можно встретить и несколько другое обозначение сигналов интерфейса LVDS. Так, в частности, широко применяется такое обозначение, как RX0+/-, RX1+/-, RX2+/-, RX3+/- и RXC+/-.
Входной сигнал CLK представляет собой сигнал пиксельной частоты (Pixel Clock) и он определяет частоту формирования сигналов R/G/B на входе трансмиттера. Умножитель частоты умножает частоту CLK в 7 раз. Полученный тактовый сигнал (7xCLK) используется для тактирования сдвиговых регистров, а также передается по дифференциальным линиям CLKP/CLKM.
7-разрядный параллельный код загружается в сдвиговые регистры трансмиттера по стробирующему сигналу, вырабатываемому внутренней управляющей логикой трансмиттера. После загрузки начинается поочередное «выталкивание» битов на соответствующую дифференциальную линию, и этот процесс тактируется сигналом 7xCLK.
Таким образом, на каждой из четырех дифференциальных линий данных (Y0P/YOM, Y1P/Y1M, Y2P/Y2M, Y3P/Y3M ) формируется 7-разрядный последовательный код, передаваемый синхронно с тактовыми сигналами на линии CLKP/CLKM.
Обратное преобразование последовательного кода в параллельный осуществляется ресивером, входящим в состав LCD-панели, а поэтому вполне естественно, что ресивер, фактически, является зеркальным отражением трансмиттера.
Интерфейс LVDS используется для передачи как 18-разрябного цветового кода (3 цвета по 6 бит на каждый), так и 24-разрядного цвета (3 базовых цвета по 8 бит). Но в отличие от интерфейса TMDS, здесь каждому цвету не выделяется отдельная дифференциальная пара, т.е. каждый дифференциальный канал LVDS предназначен для передачи отдельных битов разных цветов. Кроме сигналов цвета, на LCD-панель должны передаваться еще:
— сигнал строчной синхронизации (HSYNC);
— сигнал кадровой синхронизации (VSYNC);
— сигнал разрешения данных (DE).
Эти управляющие сигналы также передаются по дифференциальным каналам, предназначенным для передачи данных, т.е. по линиям YnP/YnM. Таким образом, существует два варианта формата данных, передаваемых на LCD-матрицу.
Первый вариант соответствует 18-разрядному цветовому коду, и при этом на вход трансмиттера подается 21 разряд данных. Второй вариант – это 24-разрядный цветовой код, при котором на входе трансмиттера должно быть 27 бит данных. Разница между двумя этими вариантами, формально, небольшая и она отражена в табл.3.

Таблица 3.

18-разрядный цвет24-разрядный цвет
R0-R5R0-R7
G0-G5G0-G7
B0-B5B0-B7
HSYNC HSYNC 
VSYNC VSYNC 
DE DE 

о, какие разряды цвета и служебные сигналы будут передаваться по дифференциальной линии, определяется сигналами, подаваемыми на вход соответствующего сдвигового регистра трансмиттера. При этом, конечно же, необходимо понимать, что ресивер, расположенный на LCD-панели, будет осуществлять преобразование в обратном порядке и на его выходе будет получен точно такой же формат данных. А это все означает, что вполне конкретная LCD-панель оказывается привязанной к конкретной управляющей плате монитора. Такая привязка LCD-панели к управляющей плате, конечно же, неудобна большинству производителей, т.к. отсутствует какая-либо унификация. Именно поэтому, де-факто, практически всеми производителями LCD-дисплеев и LCD-панелей использовался вполне определенный формат входных данных, позволявший к любой плате подключать любую панель. Этот формат данных стал основой стандарта, разработанного ассоциацией VESA, и на сегодняшний день можно говорить, что LVDS превратился в унифицированный интерфейс, в котором однозначно прописан протокол передачи, формат входных данных, соединительный разъем и цоколевка разъема. На этот стандарт мы и будем опираться, так как выпускаемые сейчас панели соответствуют именно ему, и встретить уникальные LVDS-интерфейсы практически невозможно.

Общая схема, поясняющая архитектуру интерфейса LVDS, представлена

Итак, стандартный вариант распределения входных сигналов трансмиттера между его сдвиговыми регистрами представлен на рис

В результате, протокол передачи данных по дифференциальным каналам интерфейса LVDS выглядит так, как это показано на рис.21.

Как показывает внимательный анализ рис.20 и рис.21, интерфейс отличается высокой универсальностью, в результате чего, фактически, решен вопрос совместимости LCD-панелей и управляющих плат. Причем разработчик монитора имеет возможность практически не заботиться о согласовании разрядности цвета скалера и LCD-панели. Так, например, если разработчик решил применить более дешевую LCD-панель (с 18-битным кодированием цвета), то в интерфейсе не задействуется дифференциальный канал RX3, в результате чего старшие разряды цвета просто-напросто «обрубаются». А вот при разработке более дорогой модели монитора, в которой применяется LCD-панель с 24-битным кодированием, производитель использует ту же самую управляющую плату и даже не изменяет программный код ее микропроцессора, и просто подключает эту панель через полнофункциональный интерфейс – и все работает. Кроме того, производитель монитора в своем изделии может использовать любую матрицу любого производителя, лишь бы он была оснащена интерфейсом LVDS и имела бы соответствующий форм-фактор (который, к слову сказать, тоже стандартизируется). Конечно же, широкий модельный ряд мониторов не всегда получают таким примитивным образом, но и недооценивать этот метод тоже не стоит. Положительным моментом использования LVDS является еще и то, что все это дает широкие возможности сервисным специалистам при ремонте LCD-мониторов.

В принципе, интерфейс LVDS может использоваться для передачи любых цифровых данных, о чем говорит широкое применение LVDS в телекоммуникационной отрасли. Однако, все-таки, наибольшее распространение он получил именно как дисплейный интерфейс. Для увеличения пропускной способности этого интерфейса, компания разработчик (National Semiconductor) расширила интерфейс LVDS и удвоила количество дифференциальных пар, используемых для передачи данных, т.е. теперь их стало восемь.

Это расширение получило название LDI – LVDS Display Interface. Кроме того, в спецификации LDI улучшен баланс линий по постоянному току за счет введения избыточного кодирования, а стробирование производится каждым фронтом такового сигнала (что позволяет вдвое повысить объем передаваемых данных без увеличения тактовой частоты). LDI поддерживает скорость передачи данных до 112 МГц. В документации данная спецификация встречается также и под наименованием OpenLDITM, а у отечественных специалистов отклик в душе нашел термин «двухканальный LVDS».
Интересно отметить, что в интерфейсе LVDS (LDI) имеется 8 дифференциальных пар, предназначенных для передачи данных, и две дифференциальные пары тактовых сигналов, т.е. в LDI имеется два, практически, независимых полнофункциональных канала, передача данных в каждом из которых тактируется собственным тактовым сигналом. Напомним, что в двухканальном TMDS оба канала передачи данных тактируются единым тактовым сигналом.
Естественно, что наличие двух каналов позволяет вдвое увеличить пропускную способность интерфейса, так как за один пиксельный такт можно предать информацию о двух пикселях. При этом один канал предназначен для передачи четных точек экрана (канал Even), а второй – для нечетных точек экрана (канал Odd).
Использование одноканального или двухканального LVDS определяется такими характеристиками LCD-панели и монитора, как:
— размер экрана;
— разрешающая способность;
— частота кадровой развертки, т.е. определяется режимом работы.
Разъем интерфейса LVDS на сегодняшний день можно считать стандартным, т.е. количество контактов разъема и порядок распределения сигналов по контактам является одинаковым для всех LCD-панелей любого производителя. Единственное отличие разъемов может заключаться в их конструктивном исполнении:
— разъем для плоского ленточного кабеля или традиционный разъем для обычных соединительных проводов;
— наличие или отсутствие экрана;
— наличие или отсутствие дополнительных заземляющих контактов на краях разъема;
— разъемы с разным шагом между контактами и т.п.
Стандартный разъем LVDS считается 30-контактным, хотя по его бокам могут присутствовать еще два или четыре контакта, выполняющих «заземляющую» функцию. Эти контакты в стандартном варианте не нумеруются, а обозначаются как «Frame» и соединены со схемной «землей». Однако иногда на схемах вы можете столкнуться с тем, что разъем LVDS обозначен, как 32-контактный. В этом случае следует помнить, что крайние контакты (1 и 32), как раз, и являются контактами «Frame», без учета которых интерфейс сразу же превращается в стандартный 30-контактный разъем. Порядок распределения сигналов интерфейса LVDS по контактам соединительного разъема и их традиционное обозначение представлены в табл.4.30-контактный разъем является полнофункциональным и предназначен для двухканального LVDS. В LCD-панелях с небольшим размером экрана (15-дюймов), чаще всего, используется одноканальный LVDS, т.к. его пропускной способности вполне достаточно. В этом случае задействуется та часть интерфейса, которая соответствует нечетному каналу LVDS, при этом линии четного канала могут вообще отсутствовать.

Таблица 4.

Обознач.Описание
Frame VSS Рама, каркас разъема (соединен с землей)
1RXO0-«-» для дифф. пары №0 нечетного канала
2RXO0+«+» для дифф. пары №0 нечетного канала
3RXO1-«-» для дифф. пары №1 нечетного канала
4RXO1+«+» для дифф. пары №1 нечетного канала
5RXO2-«-» для дифф. пары №2 нечетного канала
6RXO2+«+» для дифф. пары №2 нечетного канала
7VSSЗемля
8RXOC-«-» для дифф. пары сигнала CLK нечетного канала
9RXOC+«+» для дифф. пары сигнала CLK нечетного канала
10RXO3-«-» для дифф. пары №3 нечетного канала
11RXO3+«+» для дифф. пары №3 нечетного канала
12RXE0-«-» для дифф. пары №0 четного канала
13RXE0+«+» для дифф. пары №0 четного канала
14VSSЗемля
15RXE1-«-» для дифф. пары №1 четного канала
16RXE1+«+» для дифф. пары №1 четного канала
17VSSЗемля
18RXE2-«-» для дифф. пары №2 четного канала
19RXE2+«+» для дифф. пары №2 четного канала
20RXEC- «-» для дифф. пары сигнала CLK четного канала
21RXEC+«+» для дифф. пары сигнала CLK четного канала
22RXE3-«-» для дифф. пары №3 четного канала
23RXE3+«+» для дифф. пары №3 четного канала
24VSSЗемля
25VSSЗемля
26NC (DE/ID)Не используется. Некоторые производители данный контакт используют в  качестве сигнала разрешения матрицы или сигнала идентификации. Допускается и другое использование этого контакта.
27VSS Земля
28VCC Напряжение питания (+12V/+5V/+3.3V)
29VCC Напряжение питания (+12V/+5V/+3.3V)
30VCC Напряжение питания (+12V/+5V/+3.3V)
FrameVSSРама, каркас разъема (соединен с землей)

Через интерфейс LVDS подается также и питающее напряжение для элементов LCD-матрицы. Это напряжение, обозначаемое в табл.4 как VCC, может представлять собой напряжение одного из трех номиналов:
— +3.3 V (обычно для 15-дюймовых матриц);
— +5V (для 15-дюймовых и 17-дюймовых матриц);
— +12V (обычно для 19-дюймовых матриц и больше).
Итак, интерфейс LVDS обеспечивает наилучшую из всех интерфейсов универсальность соединения LCD-панели с главной платой монитора. Так же как и в случае использования TMDS, на главной плате монитора должен находиться LVDS-трансмиттер, а в состав LCD-панели должен входить LVDS-ресивер. И трансмиттер и ресивер могут представлять собой как отдельные микросхемы (что на сегодняшний день является достаточно редким явлением), так и могут входить в состав скалера и TCON соответственно.
Если трансмиттер реализован в виде отдельной микросхемы, то необходимо учесть что каждая такая микросхема представляет собой функционально законченное устройство, обеспечивающее преобразование и передачу данных одного канала. Естественно, что в этом случае для организации двухканального LVDS, придется использовать две одинаковых микросхемы трансмиттера. И здесь вполне понятно, что одна микросхема трансмиттера предсталяет собой четный канал данных, а вторая – нечетный. Пример подобного интерфейса представлен на рис.23, где изображен интерфейс LVDS монитора Samsung SyncMaster 172T. В этом мониторе в качестве трансмиттеров LVDS используются микросхемы NT7181F. На схеме следует обратить внимание, что 30-контактный разъем LVDS (CN402) является зеркальным отражением той цоколевки, которая была представлена в табл.4 (т.е. в таблице 4 мы представили распределение сигналов по контактам разъема на стороне LCD-матрицы).


Обознач.
Описание
1VCC Напряжение питания (+3.3V)
2VCC Напряжение питания (+3.3V)
3VSSЗемля
4VSSЗемля
5RX0-«-» для дифф. пары №0
6RX0+«+» для дифф. пары №0
7VSSЗемля
8RX1-«-» для дифф. пары №1
9RX1+«+» для дифф. пары №1
10VSSЗемля
11RX2-«-» для дифф. пары №2 
12RX2+«+» для дифф. пары №2 
13VSSЗемля
14RXC-«-» для дифф. пары сигнала CLK 
15RXC+«+» для дифф. пары сигнала CLK
16VSSЗемля
17RX3-«-» для дифф. пары №3 
18RX3+«+» для дифф. пары №3 
19VSSЗемля
20VCC Напряжение питания (+3.3V)
21FrameЗемля
22FrameЗемля

Пример одноканального интерфейса LVDS с 22-контаткным разъемом и отдельной микросхемой трансмиттера представлен на рис.24


 

Компаниями Philips и LG тоже применялся 22-контактный разъем, но в отличие от Samsung, этот разъем имел совершенно другую цоколевку (см. табл.6).

Таблица 6.

Обознач.Описание
1FrameЗемля
2FrameЗемля
3NCНе используется
4FR0M «-» для дифф. пары №0
5VSSЗемля
6FR0P «+» для дифф. пары №0
7VCC Напряжение питания (+5V)
8FR1M«-» для дифф. пары №1
9VSSЗемля
10FR1P«+» для дифф. пары №1
11VCC Напряжение питания (+5V)
12FR2M«-» для дифф. пары №2 
13VSSЗемля
14FR2P«+» для дифф. пары №2 
15VSSЗемля
16FCLKM«-» для дифф. пары сигнала CLK 
17VSSЗемля
18FCLKP «+» для дифф. пары сигнала CLK
19VSSЗемля
20FR3M «-» для дифф. пары №3 
21VSSЗемля
22FR3P«+» для дифф. пары №3 

Кроме того, в относительно современных 15-дюймовых мониторах LG, например в LG Flatron L1510P, использовался реальный 20-контактный разъем для передачи данных одноканального LVDS. Распределение сигналов по контактам данного разъема приводится в табл.7.

Таблица 7.

Обознач.Описание
1NCНе используется
2VSSЗемля
3Y3P«+» для дифф. пары №3 
4Y3M «-» для дифф. пары №3 
5VSSЗемля
6CLKP «+» для дифф. пары сигнала CLK
7CLKM«-» для дифф. пары сигнала CLK 
8VSSЗемля
9Y2P«+» для дифф. пары №2 
10Y2M«-» для дифф. пары №2 
11VSSЗемля
12Y1P«+» для дифф. пары №1
13Y1M «-» для дифф. пары №1
14VSS Земля
15Y0P «+» для дифф. пары №0
16Y0M «-» для дифф. пары №0
17VSS Земля
18VSS Земля
19VCC Напряжение питания (+3.3V/+5V)
20VCC Напряжение питания (+3.3V/+5V)

Другой вариант 20-контактного разъема интерфейса LVDS применялся фирмами Philips и LG в 15/17 и 18-дюймовых матрицах, в которых передача данных осуществлялась с использованием 2-канального LVDS. При этом, 20-контактный разъем предназначался исключительно для передачи данных и на нем отсутствуют контакты питания и земли. Питающее напряжение и сигнальная земля LCD-матрицы в данном случае выведены на другой разъем, обычно 5-контаткный. Распределение сигналов двухканального LVDS по контактам 20-пинового разъема в мониторах Philips и LG, представлено в табл.8.

Таблица 8.

Обознач.Описание
1FR3P«+» для дифф. пары №3 (нечетный канал)
2FR3M«-» для дифф. пары №3 (нечетный канал)
3FCLKP«+» для дифф. пары сигнала CLK (нечетный канал)
4FCLKM«-» для дифф. пары сигнала CLK (нечетный канал)
5FR2P«+» для дифф. пары №2 (нечетный канал)
6FR2M«-» для дифф. пары №2 (нечетный канал)
7FR1P«+» для дифф. пары №1 (нечетный канал)
8FR1M«-» для дифф. пары №1 (нечетный канал)
9FR0P«+» для дифф. пары №0 (нечетный канал)
10FR0M«-» для дифф. пары №0 (нечетный канал)
11SR3P«+» для дифф. пары №3 (четный канал)
12SR3M«-» для дифф. пары №3 (четный канал)
13SCLKP«+» для дифф. пары сигнала CLK (четный канал)
14SCLKM«-» для дифф. пары сигнала CLK (четный канал)
15SR2P«+» для дифф. пары №2 (четный канал)
16SR2M«-» для дифф. пары №2 (четный канал)
17SR1P«+» для дифф. пары №1 (четный канал)
18SR1M«-» для дифф. пары №1 (четный канал)
19SR0P«+» для дифф. пары №0 (четный канал)
20SR0M«-» для дифф. пары №0 (четный канал)

Как видно из всего этого, при применении на LCD-матрице 20-контактного разъема говорить о совместимости панелей различных производителей говорить не приходится (именно эту проблему и пытались решить введением стандартного 30-пинового разъема).

Еще раз обращаем внимание на то, что цоколевка разъемов во всех таблицах представлена со стороны LCD-матрицы. Это означает, что на основной плате монитора она имеет обратный порядок.

В последних номерах прошлого года мы начали публикацию обзора внешних интерфейсов TFT-панелей. А так как эта тема является достаточно обширной, то пришлось данный обзор разбить на несколько частей. Последнюю – третью часть мы и представляем вашему вниманию. В этой части речь пойдет об интерфейсе RSDS, который хотя и крайне редко, но все же используется для передачи данных на LCD-матрицу.

Так как первые две части обзора были опубликованы в прошлом году, напомним нашим читателям, о чем в них говорилось.

Итак, на LCD-матрицу необходимо передать информацию о цвете каждой экранной точки, а также сигналы строчной и кадровой синхронизации. Информация о цвете предается в цифровом виде, при этом каждой точке соответствует либо 18-разрядный, либо 24-разрядный цифровой код. Как известно, любой цвет представляется комбинацией трех основных цветов (красного, зеленого и синего), и каждый из этих трех цветов описывается либо 6-битным кодом(поэтому и получается 18-разрядный цветовой поток: 3 цвета по 6 бит), либо 8-битным кодом (поэтому и получается 24-разрядный цветовой поток: 3 цвета по 8 бит). Интерфейс, по которому передается информация о цвете, должен быть скоростным, т.к. через него передается очень большой объем данных. Ведь для каждой экранной точки необходимо передать до 24 бит, а, например, при разрешении 1280х1024 таких экранных точек более 1.3 миллиона. Причем весь этот объем данных (1.3 миллиона по 24 бита) необходимо передавать 60 раз в секунду.

На сегодняшний день существует несколько способов (несколько интерфейсов) соединения ЖК-панели с главной платой микропроцессора:— параллельный цифровой интерфейс;- интерфейс TMDS;- интерфейс LVDS;- интерфейс RSDS.

За исключением первого в приведенном списке, все остальные интерфейсы являются последовательными, что позволяет повысить длину кабельного соединения, и, в конечном счете, увеличить скорость передачи данных. Кроме того, необходимо отметить, что все эти последовательные интерфейсы используют для передачи данных дифференциальные линии (пары), что позволяет улучшить помехозащищенность интерфейса.

И если интерфейсы TMDS и LVDS очень похожи между собой, и их различия можно считать, в большей степени, техническими, то интерфейс RSDS отличается от них достаточно существенно.

Прежде чем переходить к обсуждению технических деталей интерфейса RSDS, необходимо отметить его «стратегические» отличия от рассмотренных ранее интерфейсов и понять отличия в архитектуре всего LCD-монитора, возникающие при использованииRSDS.

Во-первых, вспомним, что непосредственное управление жидкокристаллическими (ЖК) ячейками осуществляют микросхемы столбцовых драйверов и строковых драйверов. Столбцовые драйверы осуществляют преобразование цифрового кода в аналоговое напряжение, прикладываемое к ЖК-ячейке. Эти аналоговые напряжения прикладываются поочередно к каждому столбцу ЖК-ячеек, в результате чего точки каждой строки поочередно засвечиваются одна за другой. Назначением строковых драйверов является поочередное перебирание строк, в результате чего обеспечивается построчный вывод изображения.

Управление столбцовыми и строковыми драйверами осуществляется микросхемой контроллера синхронизации — Timing Controller, традиционно обозначаемую TCON. Основной функцией этого контроллера является преобразование сигналов, сформированных на выходе скалера, в сигналы управления строковыми и столбцовыми драйверами. Физически, контроллер TCON, традиционно, располагается непосредственно на LCD-панели, поближе к драйверам строк и столбцов. Именно для передачи данных от скалера на TCON и используются такие интерфейсы, как параллельный цифровой интерфейс, интерфейс TMDS и интерфейс LVDS (рис.1). Но передать данные на TCON – это только полдела. Цветовые данные (18-разрядный или 24-разрядный поток) должны быть в итоге переданы на микросхемы столбцовых драйверов, где и будут преобразованы в аналоговое напряжение. От контроллера TCON на столбцовые драйверы цветовые данные передаются с помощью другого интерфейса – чаще всего интерфейса RSDS. Таким образом, RSDS является внутренним интерфейсом LCD-панели. Но это в классическом варианте.

Рис.1 Классическая архитектура современных TFT-матриц

http://vef-kvant.ru/interf.htm


 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Вставить формулу как
Блок
Строка
Дополнительные настройки
Цвет формулы
Цвет текста
#333333
Используйте LaTeX для набора формулы
Предпросмотр
\({}\)
Формула не набрана
Вставить